
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

 Lecture 11
Graphs, DFS, BFS,
topological sort

© 2015 Goodrich and Tamassia Graphs 2

Graphs
❑ A graph is a pair (V, E), where

◼ V is a set of nodes, called vertices

◼ E is a collection of pairs of vertices, called edges

◼ Vertices and edges are positions and store elements

❑ Example:
◼ A vertex represents an airport and stores the three-letter airport code

◼ An edge represents a flight route between two airports and stores the
mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2015 Goodrich and Tamassia Graphs 3

Edge Types
❑ Directed edge

◼ ordered pair of vertices (u,v)

◼ first vertex u is the origin

◼ second vertex v is the destination

◼ e.g., a flight

❑ Undirected edge
◼ unordered pair of vertices (u,v)

◼ e.g., a flight route

❑ Directed graph
◼ all the edges are directed

◼ e.g., route network

❑ Undirected graph
◼ all the edges are undirected

◼ e.g., flight network

ORD PVD
flight

AA 1206

ORD PVD
849

miles

© 2015 Goodrich and Tamassia Graphs 4

John

David
Paul

brown.edu

cox.net

cs.brown.edu

att.net

qwest.net

math.brown.edu

cslab1bcslab1a

Applications
❑ Electronic circuits

◼ Printed circuit board

◼ Integrated circuit

❑ Transportation networks

◼ Highway network

◼ Flight network

❑ Computer networks

◼ Local area network

◼ Internet

◼ Web

❑ Databases

◼ Entity-relationship diagram

© 2015 Goodrich and Tamassia Graphs 5

Terminology
❑ End vertices (or endpoints) of

an edge
◼ U and V are the endpoints of a

❑ Edges incident on a vertex
◼ a, d, and b are incident on V

❑ Adjacent vertices
◼ U and V are adjacent

❑ Degree of a vertex
◼ X has degree 5

❑ Parallel edges
◼ h and i are parallel edges

❑ Self-loop
◼ j is a self-loop

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

© 2015 Goodrich and Tamassia Graphs 6

P1

Terminology (cont.)

❑ Path
◼ sequence of alternating

vertices and edges

◼ begins with a vertex

◼ ends with a vertex

◼ each edge is preceded and
followed by its endpoints

❑ Simple path
◼ path such that all its vertices

and edges are distinct

❑ Examples
◼ P1=(V,b,X,h,Z) is a simple path

◼ P2=(U,c,W,e,X,g,Y,f,W,d,V) is a
path that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

© 2015 Goodrich and Tamassia Graphs 7

Terminology (cont.)
❑ Cycle

◼ circular sequence of alternating
vertices and edges

◼ each edge is preceded and
followed by its endpoints

❑ Simple cycle

◼ cycle such that all its vertices
and edges are distinct

❑ Examples

◼ C1=(V,b,X,g,Y,f,W,c,U,a,) is a
simple cycle

◼ C2=(U,c,W,e,X,g,Y,f,W,d,V,a,)
is a cycle that is not simple

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

© 2015 Goodrich and Tamassia Graphs 8

Properties
Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Property 1

Sv deg(v) = 2m

Proof: each edge is
counted twice

Property 2
In an undirected graph

with no self-loops and
no multiple edges

m n (n - 1)/2

Proof: each vertex has
degree at most (n - 1)

What is the bound for a
directed graph?

Example

◼ n = 4

◼ m = 6

◼ deg(v) = 3

© 2015 Goodrich and Tamassia Graphs 9

Vertices and Edges

❑ A graph is a collection of vertices and edges.

❑ A Vertex is can be an abstract unlabeled object
or it can be labeled (e.g., with an integer
number or an airport code) or it can store other
objects

❑ An Edge can likewise be an abstract unlabeled
object or it can be labeled (e.g., a flight
number, travel distance, cost), or it can also
store other objects.

© 2015 Goodrich and Tamassia Graphs 10

Adjacency List Structure
❑ Incidence sequence

for each vertex
◼ sequence of

references to edge
objects of incident
edges

❑ Augmented edge
objects
◼ references to

associated
positions in
incidence
sequences of end
vertices

© 2015 Goodrich and Tamassia Graphs 11

Adjacency Matrix Structure
❑ Edge list structure

❑ Augmented vertex
objects
◼ Integer key (index)

associated with vertex

❑ 2D-array adjacency
array
◼ Reference to edge

object for adjacent
vertices

◼ Null for non
nonadjacent vertices

❑ The “old fashioned”
version just has 0 for
no edge and 1 for edge

© 2015 Goodrich and Tamassia Graphs 12

Performance
(All bounds are big-oh running times, except for “Space”)

▪ n vertices, m edges

▪ no parallel edges

▪ no self-loops

Adjacency
List

Adjacency
Matrix

Space n + m n2

incidentEdges(v) deg(v) n

areAdjacent (v, w) min(deg(v), deg(w)) 1

insertVertex(o) 1 n2

insertEdge(v, w, o) 1 1

removeVertex(v) deg(v) n2

removeEdge(e) 1 1

© 2015 Goodrich and Tamassia Depth-First Search 1

Depth-First Search

DB

A

C

E

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 Goodrich and Tamassia Depth-First Search 2

Subgraphs

❑ A subgraph S of a graph
G is a graph such that

◼ The vertices of S are a
subset of the vertices of G

◼ The edges of S are a
subset of the edges of G

❑ A spanning subgraph of G
is a subgraph that
contains all the vertices
of G

Subgraph

Spanning subgraph

© 2015 Goodrich and Tamassia Depth-First Search 3

Connectivity

❑ A graph is
connected if there is
a path between
every pair of
vertices

❑ A connected
component of a
graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

© 2015 Goodrich and Tamassia Depth-First Search 4

Trees and Forests

❑ A (free) tree is an
undirected graph T such
that
◼ T is connected

◼ T has no cycles

This definition of tree is
different from the one of
a rooted tree

❑ A forest is an undirected
graph without cycles

❑ The connected
components of a forest
are trees

Tree

Forest

© 2015 Goodrich and Tamassia Depth-First Search 5

Spanning Trees and Forests

❑ A spanning tree of a
connected graph is a
spanning subgraph that is
a tree

❑ A spanning tree is not
unique unless the graph is
a tree

❑ Spanning trees have
applications to the design
of communication
networks

❑ A spanning forest of a
graph is a spanning
subgraph that is a forest

Graph

Spanning tree

© 2015 Goodrich and Tamassia Depth-First Search 6

Depth-First Search

❑ Depth-first search (DFS)
is a general technique
for traversing a graph

❑ A DFS traversal of a
graph G
◼ Visits all the vertices and

edges of G

◼ Determines whether G is
connected

◼ Computes the connected
components of G

◼ Computes a spanning
forest of G

❑ DFS on a graph with n
vertices and m edges
takes O(n + m) time

❑ DFS can be further
extended to solve other
graph problems
◼ Find and report a path

between two given
vertices

◼ Find a cycle in the graph

❑ Depth-first search is to
graphs what Euler tour
is to binary trees

© 2015 Goodrich and Tamassia Depth-First Search 7

DFS Algorithm from a Vertex

© 2015 Goodrich and Tamassia Depth-First Search 8

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge

back edge

A visited vertex

A unexplored vertex

unexplored edge

© 2015 Goodrich and Tamassia Depth-First Search 9

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

© 2015 Goodrich and Tamassia Depth-First Search 10

DFS and Maze Traversal

❑ The DFS algorithm is
similar to a classic
strategy for exploring
a maze
◼ We mark each

intersection, corner
and dead end (vertex)
visited

◼ We mark each corridor
(edge) traversed

◼ We keep track of the
path back to the
entrance (start vertex)
by means of a rope
(recursion stack)

© 2015 Goodrich and Tamassia Depth-First Search 11

Properties of DFS

Property 1
DFS(G, v) visits all the
vertices and edges in
the connected
component of v

Property 2
The discovery edges
labeled by DFS(G, v)
form a spanning tree of
the connected
component of v

DB

A

C

E

© 2015 Goodrich and Tamassia

The General DFS Algorithm

❑ Perform a DFS from each unexplored
vertex:

Depth-First Search 12

© 2015 Goodrich and Tamassia Depth-First Search 13

Analysis of DFS

❑ Setting/getting a vertex/edge label takes O(1) time

❑ Each vertex is labeled twice
◼ once as UNEXPLORED

◼ once as VISITED

❑ Each edge is labeled twice
◼ once as UNEXPLORED

◼ once as DISCOVERY or BACK

❑ Method incidentEdges is called once for each vertex

❑ DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

◼ Recall that Sv deg(v) = 2m

© 2015 Goodrich and Tamassia Breadth-First Search 1

Breadth-First Search

CB

A

E

D

L0

L1

F
L2

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 Goodrich and Tamassia Breadth-First Search 2

Breadth-First Search

❑ Breadth-first search
(BFS) is a general
technique for traversing
a graph

❑ A BFS traversal of a
graph G
◼ Visits all the vertices and

edges of G

◼ Determines whether G is
connected

◼ Computes the connected
components of G

◼ Computes a spanning
forest of G

❑ BFS on a graph with n
vertices and m edges
takes O(n + m) time

❑ BFS can be further
extended to solve other
graph problems

◼ Find and report a path
with the minimum
number of edges
between two given
vertices

◼ Find a simple cycle, if
there is one

© 2015 Goodrich and Tamassia Breadth-First Search 3

BFS Algorithm
❑ The algorithm uses “levels” Li and a mechanism for setting and getting

“labels” of vertices and edges.

© 2015 Goodrich and Tamassia Breadth-First Search 4

Example

CB

A

E

D

discovery edge

cross edge

A visited vertex

A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

© 2015 Goodrich and Tamassia Breadth-First Search 5

Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

© 2015 Goodrich and Tamassia Breadth-First Search 6

Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

© 2015 Goodrich and Tamassia Breadth-First Search 7

Properties
Notation

Gs: connected component of s

Property 1
BFS(G, s) visits all the vertices and
edges of Gs

Property 2
The discovery edges labeled by
BFS(G, s) form a spanning tree Ts

of Gs

Property 3
For each vertex v in Li

◼ The path of Ts from s to v has i
edges

◼ Every path from s to v in Gs has at
least i edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

© 2015 Goodrich and Tamassia Breadth-First Search 8

Analysis

❑ Setting/getting a vertex/edge label takes O(1) time

❑ Each vertex is labeled twice
◼ once as UNEXPLORED

◼ once as VISITED

❑ Each edge is labeled twice
◼ once as UNEXPLORED

◼ once as DISCOVERY or CROSS

❑ Each vertex is inserted once into a sequence Li

❑ Method incidentEdges is called once for each vertex

❑ BFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

◼ Recall that Sv deg(v) = 2m

© 2015 Goodrich and Tamassia Breadth-First Search 9

Applications

❑ We can use the BFS traversal algorithm, for a
graph G, to solve the following problems in
O(n + m) time

◼ Compute the connected components of G

◼ Compute a spanning forest of G

◼ Find a simple cycle in G, or report that G is a

forest

◼ Given two vertices of G, find a path in G between

them with the minimum number of edges, or
report that no such path exists

© 2015 Goodrich and Tamassia Breadth-First Search 10

DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS

Spanning forest, connected
components, paths, cycles

Shortest paths

Biconnected components

© 2015 Goodrich and Tamassia Breadth-First Search 11

DFS vs. BFS (cont.)

Back edge (v,w)

◼ w is an ancestor of v in

the tree of discovery
edges

Cross edge (v,w)

◼ w is in the same level as
v or in the next level

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Cycle detection

• Graph G has a cycle iff DFS has a back edge

Directed Acyclic Graph = DAG

Topological sort

Topological sort of a DAG G=(V,E)

1. Run DFS(G), compute finishing times of nodes
2. Output the nodes in decreasing order of finishing times

The Graph – relationship between clothing procedures

The Topological sort – a workable sequence of clothing

1. DFS WITH STACK

SUTD ISTD 50.004 Intro to Algorithms

SUTD ISTD 50.004 Intro to Algorithms

2. BFS WITH QUEUE

SUTD ISTD 50.004 Intro to Algorithms

	L12 topological sort-BFS.pdf
	Dfs_stack.pdf
	1. DFS with stack
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

